12,369 research outputs found

    Gauge Invariant Formulation and Bosonisation of the Schwinger Model

    Get PDF
    The functional integral of the massless Schwinger model in (1+1)(1+1) dimensions is reduced to an integral in terms of local gauge invariant quantities. It turns out that this approach leads to a natural bosonisation scheme, yielding, in particular the famous `bosonisation rule'' and giving some deeper insight into the nature of the bosonisation phenomenon. As an application, the chiral anomaly is calculated within this formulation.Comment: LaTeX, 8 page

    Loss tolerant linear optical quantum memory by measurement-based quantum computing

    Get PDF
    We give a scheme for loss tolerantly building a linear optical quantum memory which itself is tolerant to qubit loss. We use the encoding recently introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method for efficiently achieving this. The entire approach resides within the 'one-way' model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 5188–91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results suggest that it is possible to build a loss tolerant quantum memory, such that if the requirement is to keep the data stored over arbitrarily long times then this is possible with only polynomially increasing resources and logarithmically increasing individual photon life-times

    Vibrational state dependence of ionic rotational branching ratios in resonance enhanced multiphoton ionization of CH

    Get PDF
    We show that rapid evolution of a Rydberg orbital with internuclear distance in a resonance enhanced multiphoton ionization (REMPI) process can have a profound influence on the production of molecular ions in alternative rotational states. This is illustrated by calculations of ionic rotational branching ratios for (2+1′) REMPI via the O11 (20.5) branch of the E′ ^2Σ^+(3pσ) Rydberg state of CH. The rotational propensity rule for ionization changes from ΔN=odd (ΔN=N_+−N_i) at lower vibrational excitation, as expected from the ΔN+l=odd selection rule, to ΔN=even at higher vibrational levels. This effect is expected to be quite general and should be most readily observable in diatomic hydrides

    Anomalous Spin Dephasing in (110) GaAs Quantum Wells: Anisotropy and Intersubband Effects

    Get PDF
    A strong anisotropy of electron spin decoherence is observed in GaAs/(AlGa)As quantum wells grown on (110) oriented substrate. The spin lifetime of spins perpendicular to the growth direction is about one order of magnitude shorter compared to spins along (110). The spin lifetimes of both spin orientations decrease monotonically above a temperature of 80 and 120 K, respectively. The decrease is very surprising for spins along (110) direction and cannot be explained by the usual Dyakonov Perel dephasing mechanism. A novel spin dephasing mechanism is put forward that is based on scattering of electrons between different quantum well subbands.Comment: 4 pages, 3 postscript figures, corrected typo

    Direct current superconducting quantum interferometers with asymmetric shunt resistors

    Full text link
    We have investigated asymmetrically shunted Nb/Al-AlOx_x/Nb direct current (dc) superconducting quantum interference devices (SQUIDs). While keeping the total resistance RR identical to a comparable symmetric SQUID with R1=R11+R21R^{-1} = R_1^{-1} + R_2^{-1}, we shunted only one of the two Josephson junctions with R=R1,2/2R = R_{1,2}/2. Simulations predict that the optimum energy resolution ϵ\epsilon and thus also the noise performance of such an asymmetric SQUID can be 3--4 times better than that of its symmetric counterpart. Experiments at a temperature of 4.2\,K yielded ϵ32\epsilon \approx 32\,\hbar for an asymmetric SQUID with an inductance of 22pH22\,\rm{pH}. For a comparable symmetric device ϵ=110\epsilon = 110\,\hbar was achieved, confirming our simulation results.Comment: 5 pages, 4 figure

    Verifying continuous-variable entanglement in finite spaces

    Full text link
    Starting from arbitrary Hilbert spaces, we reduce the problem to verify entanglement of any bipartite quantum state to finite dimensional subspaces. Hence, entanglement is a finite dimensional property. A generalization for multipartite quantum states is also given.Comment: 4 page

    On the Structure of the Observable Algebra of QCD on the Lattice

    Full text link
    The structure of the observable algebra OΛ{\mathfrak O}_{\Lambda} of lattice QCD in the Hamiltonian approach is investigated. As was shown earlier, OΛ{\mathfrak O}_{\Lambda} is isomorphic to the tensor product of a gluonic CC^{*}-subalgebra, built from gauge fields and a hadronic subalgebra constructed from gauge invariant combinations of quark fields. The gluonic component is isomorphic to a standard CCR algebra over the group manifold SU(3). The structure of the hadronic part, as presented in terms of a number of generators and relations, is studied in detail. It is shown that its irreducible representations are classified by triality. Using this, it is proved that the hadronic algebra is isomorphic to the commutant of the triality operator in the enveloping algebra of the Lie super algebra sl(1/n){\rm sl(1/n)} (factorized by a certain ideal).Comment: 33 page
    corecore